Postharvest technologies for the developing world

Forum on postharvest practices UC Washington Center

Michael Reid, UC Davis

HORTICULTURE

Food supply depends on better postharvest technology

- Losses are high
 - Perishables > 30%
 - Grains 10 20%

Postharvest opportunities

- Germplasm manipulation
- Innovations in cooling
- Electronics, communication and robotics
- Improved packaging
- Innovative marketing

Germplasm manipulation

 Many of the issues relating to postharvest losses of horticultural crops in the developing world can be addressed using molecular tools,

BUT

 The information resulting from the application of the tools of modern biology to plants has only sparingly been applied to horticultural crops, and hardly at all to postharvest improvement

Example: Postharvest life

- Postharvest life of many fruits and flowers is regulated by ethylene
- Longevity can be improved by modulating ethylene synthesis
 - ACC synthase, ACC oxidase
- Or ethylene perception – ETR1, CTR1

Induced ethylene resistance

Shelf life and quality of 'Charentais' melons is greatly improved by biotechnology

HARVESTED 38 DAYS POST-POLLINATION STORED AT 25 °C FOR 10 DAYS

Other biotech targets Better-flavored varieties

- Heirloom, high flavor cultivars have poor postharvest characteristics
- Use biotech to improve flavor of modern cultivars, or the postharvest performance of heirloom varieties

Arctic apples

 Modified to inhibit browning and retain crispness

Other tempting targets

- Ethylene-independent ripening
- HASS stored five weeks

Innovative cooling methods

- Ice Deep space Air Conduction Convection Vater
- Radiation

Product type determines cooling method

- Can be cooled with water or ice
 - Root vegetables
 - Mature fruits
- Must be cooled with air
 - Flowers
 - Leafy vegetables
- Cannot be cooled with ice
 - Chilling-sensitve crops
 - Tropical and sub-tropical fruits and vegetables

Packaging affects cooling choice

- Water tolerant
 - -Wooden boxes
 - -Returnable plastic crates
 - -Waxed fiberboard cartons
- Water intolerant
 - -Fiberboard boxes
 - -Packs containing paper

Cooling sources?

- Availability of electricity
- Availability of ice
- Availability of water
 - -Volume
 - -Sanitation
 - -Temperature

What is the temperature variation – daily, annual?

What is the daily humidity variation?

Choosing cooling methods

- The 'no-brainers'
 - -Harvest at the coolest time of the day
 - -Including during the night
 - -Shade after harvest
 - Mist under the shade, if possible

Cooling starts in the field

• Night-time harvest?

Shade reduces heat gain and water loss

Strategies for inexpensive cooling

- Use cool media
 - -Night-time air
 - Radiation?
 - -Cold water
 - From well, river, or lake
 - Cooled with ice
 - -lce
 - -Ice/water slurry

RECOMMENDED TEMPERATURE TEMPERATURA RECOMENDABLE

0°C

32°F

Night-air storage

Cooling with ice

Ice solidifies and creates an insulating space around the product

AIR SPACE

Cooling with water *Shower-type hydrocooler*

Cooling of cherries

Evaporative cooling

- Conversion of 1 L of water to vapor absorbs 540 kcal
- Enough to cool 50 kg of product from 20° C to 10° C

Evaporative cooling

When (and where) is it useful?

Low-tech systems for evaporative cooling

- Room with wetted charcoal walls
- The zero energy cooler

PLANT SCIENCES

Results from India

Increases in Shelf Life Via Zero Energy Cool Chamber

CROP	SHELF LIFE (IN DAYS)		
	ROOM TEMPERATURE	ZERO ENERGY COOL CHAMBER	ADDED SHELF LIFE (PERCENT)
Banana	14	20	43%
Carrot	5	12	140%
Cauliflower	7	12	71%
Guava	10	15	50%
Lime	11	25	127%
Mango	6	9	50%
Mint	1	3	200%
Peas	5	10	100%
Potato	46	97	111%

Source: Adapted from Roy. n.d. "On-farm storage technology can save energy and raise farm income." Presentation.

Mechanical refrigeration

Mechanical refrigeration

- Very efficient (heat pump)
- Commercial units are very expensive

The CoolBot

- Uses a domestic air conditioner –window or 'split' unit
- A special controller allows it to achieve low temperatures

How does it work?

Results - UCD

04/12/10 12:00 AM04/13/10 12:00 AM04/14/10 12:00 AM04/15/10 12:00 AM04/16/10 12:00 AM04/17/10 12:00 AM04/18/10 12:00 AM04/19/10 12:00 AM04/20/10 12:00 AM

Construction – Bangladesh

Construction alternatives

- Using the CoolBot means that the insulated room becomes the major cost of refrigerated space
- Structural insulated panels are becoming widely available and prices are falling
- We are exploring alternatives, including spray-foam and agricultural residues in hollow walls

Better insulation The promise of 'aerogel'

Solar power for cooling

- Expensive ~ \$3,000
- Getting cheaper

Solar refrigeration

- 'Split unit' coolbot room with photovoltaic panels
 - Split units use DC-inverter technology
 - Can be powered directly by PV panels
 - Lithium ion batteries for improved storage
- Peltier blocks
 - DC heat pump
 - Can give high efficiencies
- Ice-banks
 - Solar refrigeration
 - Ice 'battery'

Radiation cooling?

- Utilizes a 'window' in the atmospheric IR absorption spectrum
- Could allow daytime cooling to the 'night sky'

IT and robotics

Labor – a diminishing resource

- Harvesting is labor intensive. Hard, itinerant and seasonal work
- More attractive incomes and working conditions in other sectors of the economy
- Cost and availability of labor can be a major constraint even in the developing world

Robotics for harvesting *Example - strawberries*

IT for assessing quality

- Non-destructive analysis
 - NIR sugar determination
 - Other taste components

IT at harvest

- Harvest for taste
- The glove

Sensors ISSN 1424-8220 www.mdpi.com/journal/sensors

Article

A Wearable Mobile Sensor Platform to Assist Fruit Grading

Rafael V. Aroca¹, Rafael B. Gomes¹, Rummennigue R. Dantas¹, Adonai G. Calbo² and Luiz M. G. Gonçalves^{1,*}

Personal postharvest

- Cell phone sensors
 - Camera (maturity, quality)
 - Audio (maturity)

Improved packaging

Smart packages

- Ripeness indicators on packages
- Flavor/taste indicators?

Gentle packages

Hammock pack for transporting delicate or ripened products

Safe packages

- Most pathogens in fresh products are from other shoppers handling the produce
- Clamshell packages can protect you from your neighbors

Marketing

What will perishables marketing look like in 10 years?

- Webmarkets
 - Convenience, 24 hour shopping
 - Personal relationship and quality produce will drive markets
 - CSA-like
 - Refrigerated 'slot' in the home
- Developing world
 - Could by-pass supermarkets?

Marketing

- Market fully mature
 - Local
 - production/farmers' markets
 - Just-in-time supply
 - Less refrigeration
 - More frequent buys

Groceries in 8 hours

Underground freight systems

- Urban, Interurban, intercontinental?
- Pneumatic
- Maglev

Drying

- Drying horticultural crops
 - Added value
 - Use for excess product
- Solar drying a good option
 - Cabinet dryers are commonly used

UCD chimney dryer

- Inexpensive
- Efficient
- High air speed

Efficient and cheap!

	Stack Dryer	Cabinet Dryer
Capital cost (\$)	38.93	58.84
Fruit capacity, fresh weight (kg)	4.5	2.25
Time to dry fruit to 10% MC (11h days)	2.0	5.5
Cost per drying capacity (\$/kg-day)	7.33	26.66
Average air temperature leaving dryer – ambient (°C)	15.2	9.3
Air velocity past fruit (m/s)	0.63	0.11

The 'dry chain'

- Kent Bradford (UCD seed biotechnology center)
- Analagous to the cold chain
- Key for maintaining quality of stored products
 - Inhibits enzyme activity
 - Prevents insect attack
 - Prevents mold growth

The dry chain for grains

- Typically air-dried to 15-30% moisture content
- Insect attack a major cause of loss
- Insect metabolism releases moisture, which accelerates mold and bacterial growth
 - Molds produce toxins
 - Aflatoxin, Fumonisin
- Below 12% moisture content insect attack and mold growth are prevented
- Combined with low oxygen, could eliminate the need for pesticides

Tools for the dry chain

- Facilitated drying
 - Solar, applied heat, dehumidifiers
- Storage in sealed containers
 - Bags, drums, silos
 - With absorbers?
 - Desiccants
 - Saturated salts
- Monitoring during storage
 - Electronic \$10 \$200
 - Chemical \$0.1
 - Cobalt chloride
 - Copper-based
 - Cell-phone app

Thanks for your interest

